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Abstract

A discrete velocity direction model for the Boltzmann equation is proposed in this paper, which provides an alternative
technique to the rarefied gas flows. In this model, the directions of molecular velocities are discrete, which are restricted in
eight fixed directions, while the molecular speed rate is still continuous. By this approximation, the Boltzmann equation in
the six-dimensional phase space is replaced by eight differential-integral equations in three-dimensional space. Thus, the
computational cost is reduced greatly by reduction of three dimensions. The number of discrete velocities is not fixed
in the present model because the speed rate can be truncated arbitrarily. This is distinguished from the conventional dis-
crete velocity models (DVM). To test this technique, it was applied to the Couette flow and Poiseuille flow. The computed
results agree well with those by the linearized Boltzmann equation and the DSMC method.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The micro-electro-mechanical system (MEMS) has developed rapidly in recent years with the develop-
ment of micro fabrication technology [1]. In the small systems, the characteristic lengths usually range from
sub-millimeter to sub-micrometer and gas flows always enter the slip regime, even the transition regime [2,3].
The Knudsen number can range from 0.01 to 10 [4]. To understand this kind of flow, some fundamental
experiments have been carried out [5–7]. These investigations disclosed that the behavior of micro flows dif-
fers greatly from that of the macro flows [2,8]. Phenomena in rarefied gas flows have been observed in micro
gas flows, such as velocity-slip and temperature-jump. Due to the limitation of current experimental condi-
tions, these experiments were mainly limited to some simple structures, such as micro channels and micro
nozzles [3]. Thus, up to now, studies on the micro gas flows still mainly rely on theoretical and computa-
tional techniques.
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In rarefied gas flows, the continuous medium hypothesis and the Navier–Stokes equation with no-slip
boundary condition are not valid any more [4,9]. The Boltzmann equation should be employed as the govern-
ing equation. It is a very complicated differential-integral equation and the integral term contains the products
of unknown variables [9,10]. Up to now, analytical solutions are only for very simple flow conditions. For
most flow conditions, Boltzmann equation still cannot be solved by analytical method. On the other hand,
it is very difficult to be solved by the numerical methods directly [11]. The reason is that the Boltzmann equa-
tion is in the six-dimensional phase space and contains seven independent variables (x, y, z, cx, cy, cz, t). The
existence of many dimensions needs such a large number of points, thus the computational cost becoming very
expensive. For example, even for the steady flow, the number of points will reach 106 if there are only 10 points
in each dimension. To our knowledge, usually 10 points in each dimension are not enough in numerical cal-
culations. So, up to now, this method cannot be widely used under current computational conditions [11].

To avoid the difficulty of the Boltzmann equation, some simulation methods were proposed, such as the
Monte–Carlo methods. In these simulation methods, the direct simulation Monte–Carlo (DSMC) method
is the most used method for rarefied gas flows [2–4,11,12]. But this method meets a great trouble in micro flows
because of low-speed. In micro flows, most flows are subsonic and usually the macro velocities of flows are
much lower than the thermal velocity at room temperature, such as the gas flows in MEMS [2]. It is very dif-
ficult to obtain statistically convergent results under the low-speed condition for DSMC method. To reduce
the statistical scatter effectively, an extremely large sample size is required. Then the computational cost
becomes very expensive. To overcome this difficulty, the information preservation (IP) method and a molec-
ular block model DSMC method are proposed [2,12]. Besides the simulation methods, some methods by
reducing the Boltzmann equation were also proposed, such as the Chapman–Enskog method, Grad 13
moment equations, BGK model equation, linearized Boltzmann equation, linearized model equation, transi-
tion probability matrix (TPM) method, convective scheme (CS) method, discrete velocity models (DVM) and
so on [9–27], in which the linearized Boltzmann equation gives the most accurate solution. But this method is
very computationally expensive [19].

To reduce the computational cost, a discrete velocity direction model is presented in this paper. In this
model, the molecular velocity directions are fixed into eight discrete directions and the molecular speed rate
is still continuous. In the conventional discrete velocity models, the molecular velocities are restricted into
a finite set and the Boltzmann equation is reduced into a set of differential equations, in which the variables
are number densities nið~r; tÞ, such as the models proposed by Broadwell, Cabannes and Gatignol
[9,13,19,20,28–30]. But in the present model, only the velocity directions are discrete. By this approximation,
the six-dimensional Boltzmann equation is reduced to a set of three-dimensional differential-integral equations
and the integral terms still contain the products of unknown variables. Though these equations are still very
difficult, the computational cost can be reduced greatly due to the six-dimensional velocity distribution func-
tion f ð~r;~c; tÞ is replaced by the three-dimensional speed distribution function fið~r; tÞ like the DVM. But the
number of discrete velocities is not fixed because the speed rate is continuous in the present model. The speed
rate will be truncated further into a finite set in numerical calculations and the number of velocities depends on
the computational condition. To test this model, the Couette flow and the Poiseuille flow in microscale were
investigated. The Knudsen number ranges from 0.01 to 10. Because the low-speed flows are more interesting in
micro flow, the characteristic velocities in the Couette flow and Poiseuille flow are much lower than the ther-
mal velocity. The plate velocity is 0.1 m/s in Couette flow and the largest velocity is less than 0.1 m/s in Poiseu-
ille flow. The velocity distributions, shearing stress and mass flux given by the present model compare well
with the results by the linearized Boltzmann equation and the DSMC method when the Knudsen number
is not large. But at large Knudsen number, the results given by the present model deviate clearly from the
Boltzmann equation, which just like the discrete velocity models.

2. Discrete velocity direction model

2.1. Basic assumptions

In the model, molecular velocities are restricted in eight discrete directions, but the distribution of speed
rate is still continuous. Eight discrete directions are defined as follows: establish a cube in a rectangular
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coordinate system. Put its center at the origin and let its sides be vertical to the coordinate axes. Then these
directions from the origin to eight apexes are the assumed directions. The sequence of eight directions is shown
in Fig. 1. To be convenient, the molecules are the same hard spheres and no external force acts on them.

2.2. Definitions of the speed distribution functions

In the discrete velocity direction model, the variables are eight speed distribution functions. They are
defined as fiðci;~r; tÞ; ði ¼ 1; 2; . . . ; 8Þ, in which ci (0 6 ci <1) is the molecular speed rate in direction i;~r is
the position vector and t is the time variable. The meaning of these variables is that in the moment
t; c 2 ðci; ci þ dciÞ;~r 2 ð~r;~r þ d~rÞ, the number of molecules moving towards direction i is fiðci;~r; tÞd~r dci.

Consider a group of molecules in a finite volume d~r, which speed rate is between ci and ci + dci. Due to the
impact effect, the molecular number will be fiðci;~r þ ci

~lidt; t þ dtÞd~rdci during a time interval dt, in which ~li is
the unit vector in direction i. The change of the molecular number can be described by the following equation:
fiðci;~r þ ci
~li dt; t þ dtÞd~r dci � fiðci;~r; tÞd~r dci ¼ ðGi � LiÞd~r dci dt; ð1Þ
in which, Gi is the gaining term and Li is the losing term. Divide Eq. (1) by the term d~r dci dt and let t approach
zero. Then
ofi

ot
þ ci

~li
ofi

o~r
¼ Gi � Li; ði ¼ 1; 2; . . . ; 8Þ; ð2Þ
2.3. Molecular collision

In order to gain the expressions of these gaining terms and losing terms, the collision law in the present
model should be studied first. Due to the characteristic of centrosymmetry of this model, the binary collisions
can be classified into four kinds according to the impact angles. Four impact angles are 0; 2arctg

ffiffiffi
2
p

=2;
2arctg

ffiffiffi
2
p

and p. The scattering way must obey the following rules: molecules still move in eight restricted
directions and the total momentum and energy of each couple of molecules keep conservation after collision.
Take the binary collisions with molecules in direction 1 for instance.

(1) Included angles are equal to 0. In this binary collision, two molecules will change their velocities and still
move in this direction after collision. To be convenient, this collision is expressed by the symbol
1–1 ? 1–1 here.
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Fig. 1. Discrete velocity direction model.
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(2) Included angles are equal to 2arctgð
ffiffiffi
2
p

=2Þ. There is only one scattering way for this kind of collisions in
order to satisfy the law of conservation of momentum, namely molecules change their velocities with
each other after collision. The collisions with the molecules in directions 2, 3 and 5 can be expressed
by 1–2 ? 2–1, 1–3 ? 3–1 and 1–5 ? 5–1.

(3) Included angles are equal to 2arctg
ffiffiffi
2
p

. The scattering way of this collision is just like the second one. The
collisions are 1–4 ? 4–1, 1–6 ? 6–1 and 1–7 ? 7–1.

(4) Included angles are equal to p. There is only one scattering way that can satisfy the laws of conservation
of energy and momentum simultaneously for this collision because two molecules have different speed
rates. Namely, two molecules will move oppositely and change their speed rates, 1–8 ? 8–1.

Besides the binary collisions, there is a kind of multi-body collisions that can easily satisfy the laws of con-
servation of energy and momentum simultaneously in this model. The total momentum can be conservative
when some couples of molecules in a diagonal line scatter into other three diagonal lines in pairs by different
probabilities if all molecular couples change their speeds after collision. Consider N molecular couples of 1–8
in a finite volume (the molecular rate of speed in the first direction is ca and the rate of speed in the second
direction is cb in all symbols). There are six feasible scattering ways: 1–8 ? 2–7, 1–8 ? 7–2, 1–8 ? 3–6, 1–
8 ? 6–3, 1–8 ? 4–5, 1–8 ? 5–4. These ways may be classified into two groups by scattering angles:

Group 1: 1–8 ? 2–7 1–8 ? 3–6 1–8 ? 5–4
Group 2: 1–8 ? 7–2 1–8 ? 6–3 1–8 ? 4–5

The scattering ways in each group should have the same probability because they have equal angles. We
assume that the probability of the first group is a and that of the second group is b. Then the law of conser-
vation of mass can be written as
3aþ 3b ¼ 1: ð3Þ

According to the law of conservation of momentum, the other relationship between a and b can be written as
�aþ b ¼ 1: ð4Þ

Solving Eqs. (3) and (4), then
a ¼ � 1

3
; ð5Þ

b ¼ 2

3
: ð6Þ
The value of probability a is negative here. So we must amend the description of this kind of collisions. The
negative probability a implies that the number of molecules with speed cb in directions 2, 3, 5 and the number
of molecules with speed ca in directions 7, 6, 4 decrease after collision. These losing molecules can be taken as
those that participate in the multi-body collision. Then we re-define this multi-body collision: three molecular
couples 1–8 collide with three molecular couples of 2–7, 3–6, 5–4. After collision, these molecular couples scat-
ter into directions 7–2, 6–3, 4–5 averagely. Then Eqs. (3) and (4) should be written as 3b = 1 + 3a and
a + b = 1. Therefore, two probabilities are a = 1/3 and b = 2/3. Now, this collision can be described by the
following symbol:
3ð1–8Þ þ ð7–2Þ þ ð6–3Þ þ ð4–5Þ ! 2ð2–7Þ þ 2ð3–6Þ þ 2ð5–4Þ:

According to the characteristic of centrosymmetry, the kind of multi-body collisions in other directions can be
described by the following symbols:
3ð8–1Þ þ ð2–7Þ þ ð3–6Þ þ ð5–4Þ ! 2ð7–2Þ þ 2ð6–3Þ þ 2ð4–5Þ;
3ð2–7Þ þ ð8–1Þ þ ð3–6Þ þ ð5–4Þ ! 2ð1–8Þ þ 2ð6–3Þ þ 2ð4–5Þ;
3ð7–2Þ þ ð1–8Þ þ ð6–3Þ þ ð4–5Þ ! 2ð8–1Þ þ 2ð3–6Þ þ 2ð5–4Þ;
3ð3–6Þ þ ð2–7Þ þ ð8–1Þ þ ð5–4Þ ! 2ð7–2Þ þ 2ð1–8Þ þ 2ð4–5Þ;
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3ð6–3Þ þ ð7–2Þ þ ð1–8Þ þ ð4–5Þ ! 2ð2–7Þ þ 2ð8–1Þ þ 2ð5–4Þ;
3ð4–5Þ þ ð7–2Þ þ ð6–3Þ þ ð1–8Þ ! 2ð2–7Þ þ 2ð3–6Þ þ 2ð8–1Þ;
3ð5–4Þ þ ð2–7Þ þ ð3–6Þ þ ð8–1Þ ! 2ð7–2Þ þ 2ð6–3Þ þ 2ð1–8Þ;
2.4. Statistics of collisions

According to the above analysis, the speed distribution functions will only be changed by the multi-body
collisions in the present model. Consider the speed distribution function in direction 1 first. The multi-body
collisions 1–8, 7–2, 6–3 and 4–5 will reduce the number of molecules with speed ca, on the other hand the
multi-body collisions 2–7, 3–6 and 5–4 will increase it. During a time interval dt, the number of collisions
between the molecules with speed ca in direction 1 and all molecules in direction 8 is
pd2 d~r dt dca

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb;
in which d is the molecular diameter. These collisions may include both the binary collisions and the multi-
body collisions. Let C be the ratio of multi-body collisions, then the losing number by this kind of multi-body
collisions can be written as
Cpd2 d~r dt dca

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb:
In the same way, the losing number of molecules with speed ca in direction 1 causing by the multi-body col-
lisions 7–2, 6–3 and 4–5 can be written as
7–2 :
C
3

pd2 d~r dt dca

Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb;

6–3 :
C
3

pd2 d~r dt dca

Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb;

4–5 :
C
3

pd2 d~r dt dca

Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb:
Add these terms together and divide them by term d~rdCa dt, then the expression of the losing term in direction
1 can be written as
L1 ¼ Cpd2

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb

�
: ð7Þ
Then the gaining term in direction 1 is
G1 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf7ðcb;~r; tÞf2ðca;~r; tÞdcb

�
þ
Z 1

0

ðca þ cbÞf6ðcb;~r; tÞf3ðca;~r; tÞdcb

þ
Z 1

0

ðca þ cbÞf4ðcb;~r; tÞf5ðca;~r; tÞdcb

�
: ð8Þ
Now, we gained the expressions of collision term in direction 1. Expressions in other directions can be written
as follows in the same manner:

Direction 2:
L2 ¼ Cpd2

Z 1

0

ðca þ cbÞf7ðcb;~r; tÞf2ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf1ðcb;~r; tÞf8ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf4ðcb;~r; tÞf5ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf6ðcb;~r; tÞf3ðca;~r; tÞdcb

�
ð9Þ
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G2 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb þ
Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb

�

þ
Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb

�
: ð10Þ
Direction 3:
L3 ¼ Cpd2

Z 1

0

ðca þ cbÞf6ðcb;~r; tÞf3ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf1ðcb;~r; tÞf8ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf4ðcb;~r; tÞf5ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf7ðcb;~r; tÞf2ðca;~r; tÞdcb

�
ð11Þ

G3 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb þ
Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb

�

þ
Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb

�
: ð12Þ
Direction 4:
L4 ¼ Cpd2

Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb

�
: ð13Þ

G4 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf7ðcb;~r; tÞf2ðca;~r; tÞdcb

�
þ
Z 1

0

ðca þ cbÞf6ðcb;~r; tÞf3ðca;~r; tÞdcb

þ
Z 1

0

ðca þ cbÞf1ðcb;~r; tÞf8ðca;~r; tÞdcb

�
: ð14Þ
Direction 5:
L5 ¼ Cpd2

Z 1

0

ðca þ cbÞf4ðcb;~r; tÞf5ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf1ðcb;~r; tÞf8ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf6ðcb;~r; tÞf3ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf7ðcb;~r; tÞf2ðca;~r; tÞdcb

�
: ð15Þ

G5 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb þ
Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb

�

þ
Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb

�
: ð16Þ
Direction 6:
L6 ¼ Cpd2

Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb

�
: ð17Þ

G6 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf7ðcb;~r; tÞf2ðca;~r; tÞdcb þ
Z 1

0

ðca þ cbÞf4ðcb;~r; tÞf5ðca;~r; tÞdcb

�

þ
Z 1

0

ðca þ cbÞf1ðcb;~r; tÞf8ðca;~r; tÞdcb

�
: ð18Þ



5262 Z. Zhang et al. / Journal of Computational Physics 227 (2008) 5256–5271
Direction 7:
L7 ¼ Cpd2

Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf8ðcb;~r; tÞf1ðca;~r; tÞdcb

�
: ð19Þ

G7 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf6ðcb;~r; tÞf3ðca;~r; tÞdcb þ
Z 1

0

ðca þ cbÞf4ðcb;~r; tÞf5ðca;~r; tÞdcb

�

þ
Z 1

0

ðca þ cbÞf1ðcb;~r; tÞf8ðca;~r; tÞdcb

�
: ð20Þ
Direction 8:
L8 ¼ Cpd2

Z 1

0

ðca þ cbÞf1ðcb;~r; tÞf8ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf4ðcb;~r; tÞf5ðca;~r; tÞdcb

�

þ 1

3

Z 1

0

ðca þ cbÞf6ðcb;~r; tÞf3ðca;~r; tÞdcb þ
1

3

Z 1

0

ðca þ cbÞf7ðcb;~r; tÞf2ðca;~r; tÞdcb

�
: ð21Þ

G8 ¼
2

3
Cpd2

Z 1

0

ðca þ cbÞf5ðcb;~r; tÞf4ðca;~r; tÞdcb

�
þ
Z 1

0

ðca þ cbÞf3ðcb;~r; tÞf6ðca;~r; tÞdcb

þ
Z 1

0

ðca þ cbÞf2ðcb;~r; tÞf7ðca;~r; tÞdcb

�
ð22Þ
The form of these governing equations is an intermediate between the Boltzmann equation and the equa-
tions of the conventional discrete velocity models. They are all differential-integral equations and include the
products of unknown variables in the integral terms. So there is no reduction in mathematic difficulty and ana-
lytic solution still cannot be obtained for most flow situations. But the variables of these equations are three-
dimensional, instead of the six-dimensional velocity distribution function in the Boltzmann equation. By get-
ting rid of three dimensions, the computational cost can be reduced greatly.

3. Numerical calculations and discussion

In this section, the Couette flow and Poiseuille flow are investigated, which have been widely used as bench-
mark problems to test new analytical and numerical methods. For two flows, the Knudsen number is defined
as the ratio of the molecular mean free path (k) to the distance (H) between two plates, Kn = k/H. The molec-
ular mean free path is derived by the hard sphere mode, k ¼ ð

ffiffiffi
2
p

pd2nÞ�1. These calculations range from the
continuum regime to the transition regime (0.01 6 Kn 6 10), which cover most gas flows in MEMS. The grids
are uniform and the space step length is less than the mean free path in all calculations.

The finite difference method of second-order upwind scheme is employed as the numerical method in the
paper. The Couette flow and Poiseuille flow are both steady flows, namely ofi

ot ¼ 0. So the unsteady terms in
these governing equations are vanished, only the convection terms are left on the left hand sides. The integral
terms on the right-hand side will be replaced by some product terms of unknown variables after integration.
The discrete values of speed rate were obtained by the following steps in the present calculations:

(1) Divide the speed space into N interval: [0,c1), [c1,c2), . . ., [cN�1,1).
(2) The average values of speed rate in each interval are taken as the discrete values. The average values in

speed interval j can be obtained by the following equation at the intervals from 1 to N � 1.
cj ¼
R cj

cj�1
f eqcdcR cj

cj�1
f eq dc

; ð23Þ

in which f eq is the Maxwell distribution, f eq ¼ nð m
2pkT Þ

3
2 e�

mC2

2kT . In the last speed interval, the speed is infinite.
The average rate of speed can be obtained by the following method:



Table
Test o

Speed
Maxw
Direct
Direct
Direct
Direct
Direct
Direct
Direct
Direct
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cN ¼
C �

PN�1
j¼1

R cj

cj�1
f eqcdc

1�
PN�1

j¼1

R cj

cj�1
f eq dc

: ð24Þ
The speed rate of molecular mean thermal motion C is obtained by C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT=pm

p
, in which k is the Boltz-

mann constant, m is the molecular mass. We chose eight discrete values of speed rate in the present calcula-
tions. Then there are 64 discrete velocities together in eight directions. By the integration of 8 discrete
equations in 8 speed intervals, we can obtain 64 difference equations, in which the integral terms on the
right-hand side were replaced by the product terms.

Here, the Maxwell distribution f eq ¼ nð m
2pkT Þ

3
2e�

mC2

2kT is employed. To test that it is the equilibrium state dis-
tribution of the present collision operator, a Couette flow was calculated here. This calculation started from a
non-Maxwell distribution. The gas between two plates is argon and wall temperature is 273 K. Eight speeds
were chosen in this calculation. Eight speed values are 81.91 m/s, 174.07 m/s, 277.46 m/s, 383.45 m/s,
490.37 m/s, 597.75 m/s, 705.40 m/s, 843.01 m/s. At the beginning, all molecular speeds are equal to
81.91 m/s. Results in the middle of the channel are compared with the Maxwell distribution, which are shown
in Table 1. The results show that the Maxwell distribution is an attracting fixed point for the present collision
operator.

Collisions between molecules and walls are very complicated. Up to now, there is no precise method in both
theory and experiment. So some approximate model are usually used, such as the direct reflection model, the
diffuse reflect model, the Maxwell model, the CLL model that is widely used in the DSMC method and so on
[2,9,10,12]. In this paper, the diffuse reflection model was employed. It is shown in Fig. 2.

The molecules in directions 3, 4, 7 and 8 move towards the wall and these molecules reflect into directions 1,
2, 5 and 6 averagely. The molecular number density in direction i with speed rate cj can be obtained by the
following equation:
ni;j ¼
1

4
ðn3 þ n4 þ n7 þ n8ÞP j; ð25Þ
in which Pj is equal to
R cj

cj�1
f eq dc when 1 6 i 6 N � 1 and equal to 1�

PN�1
j¼1

R cj

cj�1
f eq dc when j = N (the feq is

the Maxwell distribution at wall temperature.).
1
f equilibrium state distribution

Speed distributions

(m/s) 81.91 174.07 277.46 383.45 490.37 597.75 705.40 843.01
ell 0.0245 0.1384 0.2471 0.2569 0.1834 0.0961 0.0382 0.0152
ion 1 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156
ion 2 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156
ion 3 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156
ion 4 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156
ion 5 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156
ion 6 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156
ion 7 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156
ion 8 0.0243 0.1373 0.2458 0.2566 0.1842 0.0972 0.0389 0.0156

1,5

4,8

2,6

3,7

Fig. 2. Wall collision.
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Fig. 3. Couette flow.

Table 2
The rate of change of C versus various values of Kn and Uw

Cm�Cw

Cw

Kn Uw (m/s) 0.1 1 10 100

0.01 0.1575% 0.0197% 0.0025% 0.1770%
0.1 0.0025% 0.0101% 0.0010% 0.0049%
1 0 0 0 0
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The coefficient C in eight governing equations is the ratio of multi-body collisions. According to the above
analysis, only the multi-body collisions can alter the speed distribution functions in the present model. There-
fore, gas state is easy to be altered at large C because more molecules can participate the multi-body collisions.
Namely, the viscosity coefficient decreases when the coefficient C increases. The value of the coefficient C can
be determined by the viscosity coefficient in the Couette flow:

(1) Assign an initial value to the coefficient C.
(2) Calculate the horizontal velocity u and the shearing stress s in the Couette flow (Fig. 3), in which the

Knudsen number, temperature and pressure are equal to the given values.
(3) Calculate the viscosity coefficient l by the equation s ¼ �l du

dy.
(4) Compared l with the given viscosity coefficient l*. If l > l*, increase the value of C and if l < l*,

decrease the value of C.
(5) Return to the step 2 until jl � l*j < e, in which e is a small positive value.

The coefficient C is a function of flow conditions, such as the Knudsen number, the speed number, gas tem-
perature and so on. Therefore it will change with flow conditions. The study on the change of coefficient C in
the Couette flow is shown in Table 2. In these calculations, the Knudsen number ranges from 0.01 to 1 and the
plate velocity (Uw) ranges from 0.1 m/s to 100 m/s. The gas between two plates is argon. Pressure is equal to
101325 Pa and the wall temperature is equal to 273 K. Cw is the value of coefficient C on the upper wall and
Cm is the value of coefficient C in the middle of the channel. The rate of change of C is Cm�Cw

Cw
.

The results show that the change of C is very small. The largest value in all calculations is 0.177%. So the
coefficient C was considered as a constant in the following calculations.

3.1. Couette flow

The Couette flow is a kind of steady flow that is driven by the surface stress of two infinite and parallel
plates moving oppositely along their own planes, which is shown in Fig. 3.



Table 3
The distributions of dimensionless velocity u/Uw versus various values of Kn (0.01 6 Kn < 0.1) in the upper half channel of the Couette
flow

y u/Uw

Kn = 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 0.0031 0.0007 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0956 0.0967 0.0959 0.0949 0.0937 0.0926 0.0915 0.0904 0.0893
0.10 0.1944 0.1941 0.1921 0.1898 0.1875 0.1852 0.1829 0.1807 0.1785
0.15 0.2932 0.2916 0.2883 0.2848 0.2813 0.2778 0.2744 0.2711 0.2678
0.20 0.3921 0.3891 0.3845 0.3798 0.3751 0.3704 0.3659 0.3614 0.3571
0.25 0.4911 0.4865 0.4807 0.4747 0.4689 0.4631 0.4574 0.4518 0.4463
0.30 0.5901 0.5840 0.5769 0.5697 0.5626 0.5557 0.5488 0.5422 0.5356
0.35 0.6893 0.6816 0.6731 0.6647 0.6564 0.6483 0.6403 0.6325 0.6249
0.40 0.7884 0.7791 0.7693 0.7597 0.7502 0.7409 0.7318 0.7229 0.7142
0.45 0.8876 0.8766 0.8655 0.8546 0.8440 0.8335 0.8233 0.8132 0.8034
0.50 0.9867 0.9741 0.9617 0.9496 0.9378 0.9261 0.9148 0.9036 0.8927

Table 4
The distributions of dimensionless velocity u/Uw versus various values of Kn (0.1 6 Kn < 1) in the upper half channel of the Couette flow

u/Uw

y Kn = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0882 0.0786 0.0708 0.0644 0.0589 0.0543 0.0504 0.0469 0.0439
0.10 0.1764 0.1573 0.1417 0.1287 0.1179 0.1086 0.1007 0.0939 0.0879
0.15 0.2646 0.2359 0.2125 0.1931 0.1768 0.1630 0.1511 0.1408 0.1318
0.20 0.3528 0.3146 0.2833 0.2574 0.2357 0.2173 0.2015 0.1878 0.1758
0.25 0.4410 0.3932 0.3541 0.3218 0.2947 0.2716 0.2518 0.2347 0.2197
0.30 0.5292 0.4719 0.4250 0.3862 0.3536 0.3260 0.3022 0.2816 0.2636
0.35 0.6774 0.5505 0.4958 0.4505 0.4125 0.3803 0.3526 0.3286 0.3076
0.40 0.7056 0.6292 0.5667 0.5149 0.4714 0.4346 0.4029 0.3755 0.3515
0.45 0.7938 0.7078 0.6375 0.5793 0.5304 0.4889 0.4533 0.4225 0.3954
0.50 0.8820 0.7865 0.7083 0.6436 0.5893 0.5432 0.5037 0.4693 0.4394

Table 5
The average values of horizontal shearing stress versus various Kn

Kn Tao (N/m2) Kn Tao (N/m2)

0.01 0.6694 0.1 5.974
0.02 1.320 0.2 10.66
0.03 1.955 0.3 14.39
0.04 2.573 0.4 17.84
0.05 3.176 0.5 19.96
0.06 3.764 0.6 22.08
0.07 4.337 0.7 23.88
0.08 4.897 0.8 25.44
0.09 5.442 0.9 26.78
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The numerical results of argon with temperature and pressure of 273 K and 101325 Pa are shown in Tables
3–5 and Figs. 4 and 5. The molecular diameter of argon is d = 3.659 � 10�10 m and the viscosity coefficient is
l = 2.117 � 10�5 Ns/m�2. In these calculations, the plate velocity Uw is equal to 0.1 m/s. The dimensionless
velocity distributions in the upper half channel versus various Knudsen number are given in Tables 3 and
4. These velocity distributions are linear and all have discontinuities on the plates. The slippage increases with
the growing of Knudsen number. In the continuum regime (Kn = 0.01), the velocity on the plate surface is
about 0.9867Uw, which is very close to the plate velocity. In the transition regime, the velocity on the plate
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Fig. 4. Comparison of velocity profiles in the upper half channel with those by the linearized Boltzmann equation.
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Fig. 5. The shearing stress versus the Knudsen number in Couette flow.
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surface is only 0.4394Uw. Comparing the results of the linearized Boltzmann equation [18] and the DSMC
method (IP), the errors are less than 2% while 0.01 < Kn < 0.1 and less than 6% while 0.1 < Kn < 1.

Profiles of dimensionless velocity distributions in the upper half channel compared to the results of the lin-
earized Boltzmann equation at three Knudsen number (Kn1 = 0.1128, Kn2 = 0.3385 and Kn3 = 0.6770) are
shown in Fig. 4 (The compared data is from Ref. [18]). The linear degree of the present results is better than
that of the linearized Boltzmann equation and the profiles of the two methods differ not much from each
other.

The average values of horizontal shearing stress versus various Knudsen number are given in Table 5. The
shearing stress will increase while the Knudsen number grows. The phenomena can be explained by the equa-
tion s ¼ �l du

dh. According to the above results of velocity distributions, the distance between two parallel
plates decreases faster than the horizontal velocity with the increasing of the Knudsen number.

The relation of the shearing stress versus the Knudsen number comparing with the results by the Linearized
Boltzmann equation is given in Fig. 5. The normalization factor is the collisionless solution of shearing stress,
sFM ¼ mncmU w=

ffiffiffi
p
p

, in which cm is the most probable speed rate. Present profiles agree well with the results by
the linearized Boltzmann equation. The error is less than 3%.



Table 7
Shearing stress of five kinds of gases of Couette flow

Shear stress (N/m2)

He Ar N2 O2 CO2

Present 1.0561 3.3365 2.7821 2.9815 3.5149
DSMC 1.0300 3.2411 2.7262 3.1517 3.4068
IP 1.0447 3.2515 2.6936 2.9227 3.4461

Table 6
Molecular diameters and viscosity coefficients of five gases at temperature of 273 K

He Ar N2 O2 CO2

Diameter (d � 1010 m) 2.193 3.659 3.784 3.636 4.643
Viscosity (l � 105 Ns/m2) 1.865 2.117 1.656 1.919 1.380
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The shearing stress of five kinds of gases was calculated here. These gases are He, Ar, N2, O2 and CO2 with
the pressure and temperature of 1013.25 Pa and 273 K. The Knudsen number is 0.01. The values of diameters
and viscosity coefficients are obtained from the experimental data of Ref. [10], which are shown in Table 6.

The values of shearing stress are given in Table 7. The compared results by the DSMC method and the IP
method were calculated under the same conditions. The result by IP method is from Ref. [2]. Errors of five
gases compared with other methods are very small.

To our knowledge, the discrete velocity models will fail at very high speed flows and they deviate clearly
from the Boltzmann equation at large Knudsen number [31–34]. The present model meets these problems,
too. The limiting flow speed in the Couette flow was studied in Table 8. In these calculations, the plate veloc-
ities Uw range from 1 m/s to 600 m/s. The gas between two plates is argon. The Knudsen number is 0.1, the
temperature is 273 K and the pressure is 101325 Pa. The sonic speed is 282.05 m/s under these conditions.
These calculations show that the results will be divergent when plate velocity is larger than 600 m/s. Namely,
the present model is not valid. When the plate speeds are less then 500 m/s, the change of dimensionless veloc-
ities is slight. The largest error is less than 3%.

Dimensionless distributions of velocity of the Couette flow at large Kundsen number (Kn1 = 2.257 and
Kn2 = 4.51352) are shown in Fig. 6. In these calculations, the gas is still argon, the plate temperature is
273 K, the pressure is 101325 Pa and the wall speed is 0.1 m/s. The results show that the present model deviate
clearly from the linearized Boltzmann equation at these Knudsen number and the error increases with the
growing of the Knudsen number. This phenomenon is similar to that in the Broadwell model. The reason
is that the number of velocities is finite in these discrete models, which brings error. At small Knudsen number,
the collision between molecules is frequent so that the error falls rapidly. But at large Knudsen number, the
collision between molecules becomes weak. Then the error becomes clearly.

The speed number in the present model may vary. Dimensionless velocities on the upper plate under var-
ious speeds were calculated in Table 9. In these calculations, the gas is argon, Kn = 0.3385, tempera-
ture = 273 K, pressure=101325 Pa and Uw = 1 m/s. 8, 16, 32 and 64 speeds were employed. The results
were compared to that by the linearized Boltzmann equation. These results show that the precision of dimen-
sionless velocities increases with the increasing of speed number. But the increasing of precision is slower than
the increasing of the computational cost.
Table 8
Dimensionless velocities with various plate speeds

Uw (m/s) 1.0 10 100 200
u/Uw 0.8820 0.8820 0.8829 0.8857

Uw (m/s) 300 400 500 600
u/Uw 0.8883 0. 8847 0.8674 Divergence
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Table 9
Dimensionless velocities under various speed number

Speed number 8 16 32 64 Linearized

u/Uw 0.6821 0.6829 0.6831 0.6831 0.6874

Pin x

y

Pout

y=H/2

y=-H/2

Fig. 7. Poiseuille flow.

Table 10
The velocity distributions in the upper half channel for various Kn (0.01 6 Kn < 0.1) of Poiseuille flow

Velocity u � 102 m/s

x Kn = 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 8.057 4.369 3.047 2.363 1.946 1.663 1.459 1.304 1.184
0.05 7.978 4.328 3.018 2.342 1.929 1.648 1.446 1.293 1.174
0.10 7.742 4.202 2.933 2.277 1.877 1.605 1.409 1.261 1.145
0.15 7.348 3.994 2.791 2.169 1.790 1.532 1.347 1.206 1.097
0.20 6.797 3.702 2.592 2.019 1.669 1.431 1.259 1.130 1.029
0.25 6.088 3.327 2.336 1.825 1.513 1.300 1.147 1.032 0.942
0.30 5.222 2.868 2.024 1.588 1.322 1.141 1.010 0.912 0.835
0.35 4.199 2.326 1.654 1.308 1.096 0.952 0.849 0.770 0.709
0.40 3.018 1.700 1.228 0.984 0.836 0.735 0.662 0.607 0.564
0.45 1.679 0.991 0.745 0.618 0.541 0.488 0.450 0.422 0.399
0.50 0.189 0.201 0.206 0.210 0.212 0.213 0.214 0.215 0.216
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3.2. Poiseuille flow

The plane Poiseuille flow is a steady flow that is between two stationary infinite and parallel plates and is
driven by a pressure gradient along the plate direction, which is shown in Fig. 7.

The gas between two plates is still argon in the calculations. At inlet, the temperature is 273 K and the pres-
sure Pin is 101340.2 Pa. At outlet, the pressure Pout is 101309.8 Pa. The ratio of Pin/Pout is about 1.0003. The
first-order derivative of temperature is assumed to be zero at outlet, namely, oTout/ox = 0. The value of tem-
perature of two plates is constant and equals to 273 K.

The velocity distributions in the upper half channel versus various Knudsen number are given in Table 10.
The highest value of horizontal velocity is in the middle of the channel and the horizontal velocity slow down
near two plates. There is velocity slip on the plates and the slippage increase with the increasing of the Knud-
sen number.

The profiles at three Knudsen numbers are shown in Fig. 8. At the Knudsen number 0.1128, the velocity
distribution was compared with the results of Ohwada [18]. The profiles become smooth as the Knudsen num-
ber grows.

The mass fluxes of Poiseuille flow at various Knudsen number are given in Table 11. The results are non-
dimensional mass fluxes and the normalization factor is mn

2
ðP in�P out

P inþP out
Þcm

h
L, in which L is the length of the channel.

These results were compared with those by the Navier–Stokes equation with the slip boundary condition. The
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Fig. 8. The velocity distribution in the upper half channel for three Kn numbers.

Table 11
The dimensionless mass fluxes versus the Knudsen number

Kn Q/qu*H 2ðKn�1 þ 6Þ=15
ffiffiffi
p
p

0.01 8.733 7.97
0.02 4.776 4.21
0.03 3.352 2.96
0.04 2.618 2.33
0.05 2.173 1.96
0.06 1.867 1.71
0.07 1.648 1.53
0.08 1.482 1.39
0.09 1.352 1.29
0.10 1.249 1.2
0.1128 1.142 1.12
0.1128 1.1498
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last result is obtained by the linearized Boltzmann equation [22]. The maximum error compared with those by
Navier–Stokes equation is less than 14% and the result (at Kn = 0.1128) accord well with that by the linearized
Boltzmann equation.

The present calculations were carried out on a 3.0G CPU of Pentium 4. The largest number of points is
1.5 � 105 in all calculations and it needs about 30 h.

4. Conclusions

A discrete velocity direction model for micro gas flows was presented in this paper and it was applied to the
low-speed Couette and Poiseuille flows. This method can effectively reduce the numerical calculation cost. The
computing speed is about 3 times slower than a NS solver for two dimensional flows when 8 speeds are
employed, while the IP method and TPM method are about 10 times slower than a NS solver. Results of
velocity distributions, shearing stress and mass fluxes given by the present method agree well with the results
of linearized Boltzmann equation and DSMC method (IP).
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